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This paper completes the classification of some infinite and finite growth 
systems which was started in Part I. Components whose states are integer 
numbers interact in a local deterministic way, in addition to which every com- 
ponent's state grows by a positive integer k with a probability e*(l - e )  at every 
moment of the discrete time. Proposition 1 says that in the infinite system which 
starts from the state "all zeros," percentages of elements whose states exceed a 
given value k/>0 never exceed (Ce) k, where C=const. Proposition 2 refers to 
finite systems. It states that the same inequalities hold during a time which 
depends exponentially on the system size. 

KEY W O R D S :  Random process; local interaction; critical phenomena; 
growth; combinatorics; contour method; graph theory. 

1. I N T R O D U C T I O N  

This  P a r t  II  comple t e s  the classif icat ion o f  s o m e  infinite and  finite g r o w t h  

systems which  was s ta r ted  in P a r t  I. 13) P a r t  I con ta ins  all the  necessary 

def ini t ions and  n o t a t i o n s  as well  as re levant  concepts ,  examples ,  and 

references. P r o p o s i t i o n s  1 and  2 of  this pape r  imply  T h e o r e m s  1 and  2 of  
Par t  I. 

R e m e m b e r  tha t  we are  dea l ing  wi th  an  infinite o r  finite system of  

in te rac t ing  e lements ,  whose  states are  in teger  numbers .  At  every  m o m e n t  of  

the discrete  t ime the e lements  in terac t  in a local  de te rmin is t ic  way, after 
which every  e lements ' s  s tate is i ndependen t ly  i nc r emen ted  by a r a n d o m  

var iable  (. T h r o u g h o u t  this pape r  

P r o b ( f f / > k ) = e  k for k = 0 , 1 , 2  .... 
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Of all the "s tandard assumptions"  of Part  I, we need only 

Vxl ..... x.: f(xl ..... x,,) < max{xl  ..... x .}  

Proposition 1. Take  such a transition function and neighbor 
vectors that a = { (9 }. There is such a constant  C that  for all inner points 
p, all positive q, and all e the infinite system satisfies the following: 

~',1~ ~- (C/3) 2 if q = 1 
Pr~ if q > l  (1) 

Proposition 2. Take such a transition function and neighbor 
vectors that  a =  {(9}. For  any T there is such a constant  C that the 
inequality (1) holds for all finite systems of size M, all inner points p, for 
which t(p) <~ T M, all positive q, and all e. 

Sections 2--4 prove Proposi t ion 1, the last section proves Proposi-  
tion 2. 

2. FAMILY q)(p,  q) 

As is typical of the contour  method,  we prove Proposi t ion 1 by 
covering the event x(p)>~ q by such a finite family ~ ( p ,  q) of events called 
patches that 

P rob (P )  ~< ~e + (Ce)Z if q = 1 (2) 
[ (Ce)  't+1 if q > l  P ~ ( p , q )  

where C is a positive constant.  A patch is a subset of the hidden configura- 
tion space, specified by the condition h(v)>1 P(v) for all iner v, where P is 
a map  P:  V i . . . .  ~ {0, 1, 2, 3,...}. A m a p P  of this sort given, we designate 
the corresponding patch by the same letter P. The set d o m ( P ) =  
{v ie (v )  > 0} is called the domain of the patch P. Actually we consider only 
those patches whose probabil i ty is positive, that  is, those whose domains  
are finite. The whole hidden configuration space is a special patch whose 
domain  is empty. Note  that the probabil i ty of any patch P equals esum(PI, 
where sum(P),  or the sum of a patch P, denotes the sum of P ( . )  over its 
domain. We call "inquest" the process of construct ion patches, in the 
course of which we trace the events x(p)>~q back to its original 
causes--upstrats. An upstart  is an inner point v, where x(v)= h(v)> 0. The 
set of upstarts is denoted U(h). 
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2.1. The Linear Lemma 

Lemma 1. Condi t ion  G =  {60} is equivalent  to the following: There 
are such a na tura l  number  r<~s+ 1 and such r homogeneous  l inear 
functions L'~ ..... L'r on R d+t that  

L'~ + ...--}-Z'r=--O (3) 

and 

for all i =  1 ..... rtheset{eEN(60)lL;(e)<~--l}isan60-drag (4) 

Proof. Firs t  assume a =  {60}. Take  the functions L t ..... Lr provided 
by the Linear  Lemma in ref. 3 and  define L; = r-  L~ + t, which evidently fit 
our  claims. P roo f  in the other  direct ion is similar to the first part  of the 
p roof  of the Linear  Lemma in ref. 3. II 

F r o m  now on we choose the smallest  possible r and some homo-  
geneous l inear functions L'~ ..... L'r which satisfy (3) and (4). 

2.2. Polars and Trusses 

In the classical contour  method  a contour  consists of directed elements 
which can be imagined as small "magnets ,"  every one of which has a 
positive and a negative pole. When  these elements make  a contour ,  all the 
poles are "neutral ized,"  which means that  each pole of every element 
coincides with the oppos i te  pole of another  element. Our  construct ions 
come to these when r = 2. In the general  case we use branching analogs of 
countours ,  which we call trusses (as in ref. 1). They are made of analogs of 
"magnets ,"  whtch we call polars. Polars  may have poles of r different kinds. 
Now we use the adjective "even" rather  than "neural ized" to denote  a 
similar, but  more  general property .  

Let vector field qk on a set S denote  a map  ~b: S ~ Z r. A vector fiels ~b 
given, r  is its value on any y e S ;  this value is a vector whose com- 
ponents  are ~b(v)l ..... ~b(v)r. F o r  any Q _  S denote  ~b(Q)=~v~Q ~b(v). Call  a 
vector field ~b even or p-even on a set Q if all the components  of ~b(Q) equal 
p. Call  a vector  field on S overall-even if it is even on all subsets of S. 
A vector  field ~b on a set S given, its domain is dom(~b)= {v~Sl(~(v)~O}. 
Call a vector  field trivial if its domain  consists of one element. There is the 
zero vector  field, which equals 0 on every element and has an empty  
domain.  

Def in i t ion .  Call  a nonzero  vector field n on S a polar if all of the 
following condi t ions  hold:  
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�9 For  any v ~ S  and any j =  1 ..... r the value of n(v)j is either 0 or 1 
or - 1. 

�9 For  every j =  1 ..... r there is at most  one point v where n(v) j=  1; 
if it exists, it is called ther j t h  positive pole of n and denoted ~ § (j). 

�9 For  every j =  1 ..... r there is at most  one point v where 7t(v)j= - 1 ;  
if it exists, it is called the j t h  negative pole of ~ and denoted n - ( j ) .  

�9 rc is even on S. 

Note  that any polar has at least two and at most  2 . r  poles (which may 
coincide). Any polar belongs to one of the following classes: 

1. A posipole--a polar which has all the r positive poles and none 
negative. 

2. A negapole--a polar which has all the r negative poles and more 
positive. 

3. A polar which has both j-poles for all j e S  and no other poles, 
where S is some subset of { 1 ..... r}. 

Call a dipole or a j-dipole a polar of the last class for which S consists of 
one element j. (Dipoles are the only polars of the last class we shall 
actually use.) We say that a dipole is directed from its positive pole to its 
negative pole. Thus a j-dipole n from u to v has rt + ( j ) =  u and r e - ( j ) =  v 
(and no other poles). (A dipole is like a "magnet" we mentioned before. 
Indeed, in the case r = 2 all the polars we need are dipoles.) Le us call two 
sequences of polars equivalent if one turns into the other by some permuta- 
tion, and call the resulting classes of equivalence trusses. ~ ~ 5" means that 
the polar 7t is a member of the truss 5", but different members of a truss 
may coincide. 15"[ denotes the number  of members in the truss 5". We 
designate a truss by any sequence 5" = ( ~  ..... nk)  of its members, j-poles 
of members of a truss are called its j-poles and 5 . ( j )  denotes the set of 
j-poles of the truss 5". For  any two trusses ~r and ~ their concatenation 
~r �9 t~ results from writing one sequence after the other. Thus 5" * ( n )  
means the truss 5" to which polar ~ is added. Conversely, rt ~ 5" given, 
5 " - n  means 5" from which n is excluded. Of  course, 

I ~ * ~ 1  = 1 ~ 1  + I~1, 15"* <~>1 =15.1 + I, 15"-~1  = 15 .1 -  1 

For  any truss 5 its domain dom(5")  is defined as the union of domain of 
its members. There is the empty truss, whose number  of members is 0 and 
whose domain is empty. Call a truss 5" connected if for any a, b ~ dom(5")  
there is a sequence co=a, c~ ..... c~=.b in which every two neighboring 
terms belong to the domain of some member of 5". 
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To any truss #- there corresponds its vector field vec(~--), which is the 
sum of its members as vector fields. A truss 5 given, vec(~'-, v) and 
vec(3-, S) denote the values of the corresponding vector field on the point 
v and set S. Call a truss p-even, even, or overall-even if its vectors field is. 

For any r-tuple F =  (FI ..... Fr) for functions on a set S, any polar 
and truss 3- on S, and any v ~ S denote 

sum(F, n, v ) =  ~. Fj(v). rc(v)y 
. i = 1  

sum(F, n ) =  ~ sum(F, z,  v) 
o ~ S  

sum(F, # - ) =  ~ sum(F, ~z) 
t e E 5  

2.3.  G r a p h s  

We denote all graphs by letters with bars. They have no loops and 
every two vertices a and b are connected with at most one edge, which is 
denoted a - b if it is nondirected, and a ~ b if it is directed from a to b. If 
/ t  is a subgraph of G, we write H _  G. A graph G given, ver(G) denotes the 
set of its vertices. 

Given any directed graph G', call those vertices, whence edges go to a 
vertex, G-neighbors of this vertex. The set of G-neighbors of a vertex v is 
called in G-neighborhood and denoted Nv(v). The G-neighborhood of a set 
S of vertices is the union of G-neighborhoods of elements of S. Further, 
N~(S) is defined for every k=O,  1, 2 .... and every S ~ v e r ( G )  by the 
inductive rule: 

N~(S) = S, N~ + ~(S) = Nv(N~(S)) 

The transit and proper G-neighborhoods of S are 

Nlran a (S)= ~) N~(S) and N~~ U N~(S) 
k = O  k : l  

and their elements are called transit and proper G-neighbors of S, respec- 
tively. Call two. vertices G-comparable if one is a transit G-neighbor of 
the other. Call two sets G-comparable if some element of the first and 
some element of the second are G-comparable; otherwise these sets are 
6'-uncomparable. 

A polar on a graph G means a polar on ver((7). A polar ~ on a graph 
is called an edger on this graph if dora(n) consists of two vertices connected 
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with an edge. We say that n lies on this edge and that this edge under- 
lies n. A posiedger is an edger which is a posipole. A diedger on a directed 
graph is a dipole from u to v where u and v are vertices of  our  graph which 
contains an edge from u to v. 

To represent the system of neighborhoods,  we shall use the directed 
graph P which has V as its set of vertices, and edges that go to every point 
from its neighbors. Thus neighborhoods N(-)  without indices, which we 
used in ref. 3, to define our systems, and V-neighborhoods now, We shall 
also use the nondirected graph V' with V as its set of vertices, in which two 
vertices are connected if one is the other's neighbor or they are different 
neighbors of one point. A j-diedger on P from u to v is called an arrow or 
a j-arrow from u to v if L~(u)-L~(v)<~ -1 .  

L e m m a  2. Given an overall-even truss ~ r  on V, where ~r 
consists of arrows and 8 consists of edgers on V', then [all ~< 181 .const. 

Proof. Note  that if a truss Y on V is overall-even, then sum 
(L ' ,Y-- )=0 ,  where L'=(L ' I  ..... L'r). [This can be proved by grouping 
together addends that pertain to one and the same point and using (3).] 
Also note that sum(L' ,  ~) >/I for any arrow ct and Isum(L, e)[ ~< const for 
any edger e on V'. [One  may take this const = 2.  d .  A', where norm and 
A were defined in Part  I and A'  is the maximum of L~(v) for norm(v) ~< 1 
and i = 1 ..... r. ] Now 

0 = sum(U,  ~r �9 8 )  = sum(L' ,  ~r + sum(L' ,  8)  t> I~r - const .  181 I 

The following construction will be used whenever our  "inquest" will ramify. 
Given a posipole n on a connected nondirected graph G, its (nonunique) 
spanning kit consists of a spanning tree span-tree(n, (7) and a spanning truss 
span-truss(n, G), which are defined as follows: First, span-tree(n, G) is a 
minimal connected subgraph of (7 whose set of vertices contains dom(n).  
Of course, span-tree(n, (7) is a tree, whence every edge of it is a bridge. 
Based on this, for every edge a - b of span-tree(n, (7) we form a posiedger 
%_b whose kth  pole for any k = 1 ..... r coincides with a or b, namely with 
that one of the two which does not remain connected with n(k) if the edge 
a - b  is deleted from span-tree(n, (7). Now span-truss(n, (7) consists of 
these posiedgers for all edges of span-tree(n, (7). We shall refer to the 
following properties of any spanning kit: 

Iver(pan-tree(n, (7))1 = Ispan-truss(n, (7)1 + 1 (5) 

(because any tree's number of vertices is one more than the number  of its 
edges), 
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t russ (n )  * span-truss(n, 6)  is 1-even on every element of its domain (6) 

and for any truss Y- 

if Y- * ( n )  is connected, then Y- �9 span-truss(n, G) is also connected (7) 

2.4. Description of q)(p, q) 

For any inner point p and positive integer q let ~(p,  q) be the set of 
triplets ( d ,  g, P) where d and g are trusses and P is a patch, which 
satisfy the following Condition F: 

FI. ~r consists of arrows, g consists of edges on V'. 

F2. The truss ~r �9 8 is overall-even and connected. 

F3. p ~ d o m ( ~ ,  g). 

F4. d o m ( P ) _  dom(~d �9 g). 

FS. s u m ( P ) -  q >>. 18[/r. 

Now define the family ~(p ,  q) as follows: One element of this family is the 
special patch Po whose domain consists of one element p and which maps 
it into q. Otherwise a patch P belongs to q~(p, q) if there are such trusses 
d and g that (.d, g ,~ ' )~  ~g(p, q). Based on this definition, let us 
prove (2). Let [SI denote the cardinality of a finite set S. Estimate the 
cardinalities of sets 

�9 j ( p , q ) = { P e ~ ( p , q ) l s u m ( P ) = j }  where j - - 0 , 1 , , 2 3  .... 

First [~j(p, q)[ = 0  for all j<q ,  because of F5. 
Now estimate [~j(p, q)l for j>~q. Remember that ~I(P,  1) contains 

the special element Po and leave it alone. Without this element, I~j(P, q)[ 
is not more than the number of different corresponding triplets (~t, g, p). 
If P c  qsi( p, q), then the corresponding trusses have (FS, then FI  and F2 
allow us to apply Lemma 2) 

161 ~< const - ( j -  q) => Id[  ~< const - ( j -  q) ~ 1~r * 61 ~< const. ( j -  q) 

In the case j = q  this implies that ~r and g are empty, whence and 
from F4, do.re(P) is empty also, which is impossible since 
sum(P) =j>~ q > 0. Thus, including Po, [q~q(P, q)[ equals 1 if q = 1 and 0 if 
q > l .  

Now let j >  q and prove that [~j.(p, q)l does not exceed an exponent 
in j. It follows from Euler's theorem that to every trusses ~r and g in ques- 
tion there corresponds a circUit on V', which starts and ends at p and 
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makes 2.1~r �9 gl steps. Every member of d * g (all of which are edgers) 
is represented by two steps in the two opposite directions along the under- 
lying edge. Let us encode ~r �9 g by moving along this circuit step by step. 
At every step we must choose the edge to move along, the poles our edges 
has (among the 2. r possible ones), distribute these poles between the two 
ends and decide whether this edger belongs to ~r or g. Every choice is 
among a bounded number of possibilities, because the degree of any vertex 
of V' does nor exceed n2+ 2n. Now we insert into this code P(v) steps of 
another kind when we first come to a point v ~ d o m ( P )  to encode values 
of P. The resulting code contains all the information about our triplet and 
its length does not exceed 2 1 d * 8 1 + c o n s t . j ~ < c o n s t . j .  Therefore the 
number of triplets in question does not exceed const j, where 

P r o b ( P ) =  ~, IOj(p, q)l .d~< ~ constJ-d~< (const .E)q+l 
P ~ ( p , q )  j = 0  j = q +  1 

Thus obtained estimations prove (2). II 

3. A U X I L I A R Y  G R A P H S  

Through Sections 3 and 4 an inner point p, a positive integer q, and 
a hidden confirguration h are chosen and condition x(p) >1 q assumed. Our 
purpose is to present a patch Pc O(p, q) which covers h. We shall present 
it as a result of an "inquest" which will be described in Section 4. This 
section makes the necessary preparations for that. 

3.1. The Graph 

First we describe a procedure called "segmentation" which is necessary 
only in m > 1; it makes the general case "imitate" the case m = 1. Suppose 
that some directed graph G___ V contains an edge u ~ v. To segment this 
edge means to delete this edge from G and substitute it by a "chain" 

I,g ~ W o ----~ W I ----~ W 2 --.~ . . . . - - - t . W ~ j t _ l - - - - ~ W z l t ~ - V  

where Wo and wn, are our vertices u and v, and wk, where k = 1 ..... At--  1 = 
t(v)--t(u)--1, are new intermediate vertices connected by At new inter- 
mediate edges. We define the time function on the newly introduced 
vertices by the rule t(Wk)= t(u)+k for all k =  1 ..... At -1 .  

Now let us call a typed graph a directed graph in which every vertex 
v has a type: 

type(v)~ {A, B, S, U, X} 
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Let us construct a typed graph G' which will show us the scope of our 
future "inquest"; the domain of our patch will belong to the set of its 
vertices. Actually we shall inductively construct a sequence of typed graphs 
(70, C~, (32 .... and at some step we stop. Some vertices of these graphs will 
belong to V, others will be introduced by segmentation. Along with this, we 
shall prove the following Condition G~: 

G1 i. x(-)  > 0 for all those vertices of (7~ which belong to V. 

G2,.. A vertex of G,- has type S iff it does not belong to V. 

G3~. A vertex of Gi has no neighbors iff its type is U or X. 

Initial Condition: Graph (70 has one vertex p of type X and no 
edges. Note that Conditions Go hold. 

Stop-Rule:  As soon as no vertex of G'i has type X, we stop and 
define G = Gi. 

Induction Step: Suppose that the graph (7~ has a vertex v whose type 
is X. By the induction assumption, x(v)> 0. Consider three cases. 

Case O. Let x(v)=h(v) .  Then v is an upstart. In this case we turn 6'~ 
into (7~+ ~ just by changing type of v from X to U. 

Now let x(v) > h(v). Then at least one of the following two cases takes 
place: 

Case 1. Every v-drag contains a point w where x(w)>_,x(v)-h(v).  
Then, from (4), for every k = 1 ..... r there exists nk(v) ~ N(v) where 

x(n~(v)) >! f(x(N(v))) and Lk(nk(v)) -- L,(v) <~ 0 (8) 

In this case we obtain (~i+ ~ from Gi by changing type of the vertex v from 
X to A and introducing the segmented edges nk(V) --+ V for all k = 1 ..... r. 

Case 2. There is a point n(v)eN(v)  where 

x(n(v)) > f(x(N(v))) (9) 

In this case we obtain Ci+ ~ from (~i by changing type of the vertex v from 
X to B and introducing the segmented edge n(v) ~ v. 

All the vertices introduced by segmentation in Cases 1 and 2 do not 
belong to V, and are assigned the type S. The endpoints nk(V ) and n(v) may 
belong to Gi, in which case they keep the same type they had in G~; 
otherwise they are assigned the type X. 

Note that Conditions G~ given, Conditions G~+~ are also true in all 
cases. 
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Let us prove that  G-induct ion stops. The number  of vertices of (7,. plus 
the number  of those vertices of  (7i, whose type is U, increases at every step. 
On the other hand, all the vertices of (7i are transit V-neighbors of p, 
whence their number  is bounded. 

3.2. Tree T 

Call vertices of (7 leaves and classify them into equivalence classes, 
called branches, by the following two rules: 

�9 If two leaves have equal time values and a c o m m o n  transit 
G-neighbor,  they are equivalent. 

�9 Only those leaves are equivalent for which it follows from the 
previous rule and transitivity. 

Now define a directed graph T by the following two rules: 

�9 ver(T) is the set of branches. 

�9 Branches A, B given, A ~ N r ( B )  iff 3a ~ A, b ~ B: a ~ Nc(b) .  

Note that  the leaf p is equivalent to no other leaf. So T has a vertex {p}. 
Graph  T is a tree in which all edges are directed toward the vertex {p}. 
A branch B given, call Ntra"tB ~ c ~ J its bush or bush(B). A bush means a bush 
of some branch, which is called its root. Say that  a branch cuts a set S of 
branches if S ~ N~an(B). For  any set S of branches there is just one branch 
that cuts S, all of whose T-neighbors do not cut S; call this branch the root 

of S and denote it root(S).  For  any polar  n on (7 its root or root(n)  is the 
root  of the set of branches which intersect its domain,  and its bush is 
bush(n)  = bush(root(n)) .  

The fact that T is a tree assures that  whenever our "inquest" (which 
we describe in the next section) ramifies in the space (like the "fence" on 
Fig. 1.1 on p. 10 in ref. 2), the resulting different paths never meet again to 
interfere. We need this to be able to prove by induction that the complexity 
of our construction will not exceed the sum of the resulting patch, 
multiplied by a constant. 

3.3. Graphs V ( . )  

For  any branch A whose T-neighborhood is nonempty,  defined a 
nondirected graph ~7(A) by the following two rules: 

�9 ver(V(A)) = N r ( A ) .  
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�9 Two different vertices B ~, B'- of V(A) are connected with an edge 
in fT(A) iff there exist 

a ~ A ,  bl~Ntra"~Bl~c~c ~ J ~'c~r la~j, b2~N~a , (B2)c~Nc(a)  

L e m m a  3. Every graph V(A) is connected. 

ProoL Take any different vertices B ~ and B 2 of V(A) and prove that 
they are connected with a path in this graph. By definitions, there are 

a 1, a2eA ,  b I e B  I c~Nc(a') ,  b 2 e B ' - n N a ( a  2) 

If a ~ = a 2, then B t and B 2 are connected with an edge. Now let a ~ :~ a 2. 
Since a ~ and a 2 belong to one branch A, they are equivalent, which means 
that there is such a sequence Co = a ~, c~ ,..., ct ~-a ~ of different elements of A 
in which every two neighboring terms have a common  proper G-neighbor. 
This ensures that for every i = I ..... / there are e~_~ e Nc(c~_~) and 
e'~_~eNa(ci) whose transit G-neighborhoods intersect. Besides that, 
t(e~_ ~)= t(e~). Therefore e~_ ~ and e~ are equivalent; denote E~ the branch 
to which they belong. Now every two neighboring terms of the sequence 
B ~, E~ ..... Et, B 2 either coincide or are connected with an edge in V(A).  I 

4. Q - I N D U C T I O N  

4.1. Condi t ions Qi 

Now we start our  "inquest." For  every i = 0 ,  1, 2 .... we shall form a 
(4 + r)-tuple 

= ( d , ,  . . . . .  e r )  

where ~,, # i ,  ~ ,  and _@~ are trusses and Pr are patches. Thereby we shall 
also define a truss _~i= s~,, # ; ,  c~ i �9 ~; and the following r functions 
F~ ..... F ;  on V: 

F~(v) = x(v)  - P~(v) (10) 

Along with constructing E2~, we shall prove that they satisfy the following 
Conditions Qi:  

Q l ,  ~ consists of  arrows, ~ consists of diedgers on V, ~ consists 
of posiedgers on if', and ~i consists of negapoles. 

Q2,.. -~ is overall-even and connected. 

Q3/. p e dom(.~;) ~_ (ver(G) c~ V). 
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Q4i. dom(P{) ~dom(.~i(j)) and P{(v)<~h(v) for all j and all inner v. 

Q5 i. Z~=,(sum(P{)+sum(V{, ~i(j)))>~r.x(p)+ 1~i1 + r .  Ic4g[. 

Q6g. For every j and for every 6 e~ i  the truss ~ has only one 
positive j-pole and no negative j-poles in bush(f). 

Q7;. For every j every j-pole of .~ has a transit G-neighbor, which 
is a j-pole of ~i. 

1 r Initial Condition. Trusses d . ,  ~o, C4o and domains of Po ..... Po are 
empty and ~o consists of one trivial negapole, all of whose poles coincide 
with p. Note that Conditions Qo hold. 

Stop-Rule: We stop as soon as all of the following Conditions S~ 
hold: 

SIi. P{(v)=h(v) for all v~dom(~i(j)) for every j. 

$2~. Every element of d o m ( ~ )  is an upstart. 

$3;. All the members of ~ are trivial. 

We shall also refer to the following two corollaries of Conditions Qi: 

no proper G-neighbor of an element of d o m ( ~ ( j ) )  can belong to dom(P{) 

(for every j )  and 
(11) 

bushes of members of ~i are pairwise G-uncomparable (12) 

First prove (11). Assume the contrary, that is, there are 

v = b - ( j )  and ueNPr~ 

Then from Q4z, uedom(Qg(j)). Then from Q7;, u has a transit G-neighbor 
w ~ ~i(J). Then from Q6~, w = 6 - ( j ) ,  which is impossible since w ~ v. 

Now prove (12). First note that if two bushes are G-comparable, then 
their roots are T-comparable. Now assume that there are 6, 6 ' e  ~ whose 
bushes are G-comparable. Then root(6) is a transit G-neighbor of root(6') 
(or vice versa, which is analogous), whence bush(6') contains at least 2. r 
negative poles. Then, from Q2i, it contains at least 2 - r  positive poles, 
which contradicts Q6g. 

4.2. Induct ion Step 

Assume that f2 i is constructed and Conditions Qi proved. Assume also 
that at least one of Condition Sg fails and define 12i+ ~ and prove 
Conditions Q~+I. (Most of these proofs are trivial, and we omit them.) 
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Case 1. Sli fails, i.e., there are such j and v=6- ( j ) edom(~ i ( j )  ) 
that h(v)>O, but v does not belong to dom(P~). In this case the only 
difference between I2i+ ~ and /2; is that P{+, differs from P~ at one point: 
P L  l(V) = h(v). 

The only nontrivial proof in this case (as in most others) is that of 
Q5~+ ~. As i increases by one, the only change in Q5~+, is in the j th  term 
in the sum at the left side. The first addend of this term, sum(P{), increases 
by h(v), but the second addend, sum(F~, ~i(j)) ,  decreases by h(v), so the 
inequality remains true. 

Case 2. Sl~ holds, but S2~ fails, i.e., dom(@Aj) _~ dom(P~) for every j, 
but there is some v=6-(k)edom(DA which is not an upstart. Then, 
according to the Stop-Rule of G-Induction, type(v) is A or B. Consider 
these two cases. 

Case 2,4. type(v)= A. Then there exists nk(V). In this case the only 
difference between I2~+, and/2  i is that ~r ~ results from ~,. by introducing 
a k-arrow from nk(v) to V and ~;+~ differs from ~g in only one respect: 
instead of 6, it contains 6 . . . .  which has only one pole different from that 
of 6, namely 6~ew(k)= nk(v). 

All we need to prove in this case is Q5g+~ again. All that changes is 
the kth term at the left side. Let us prove that it does not decrease, which 
comes to F~+ ,(nk(v))>1 F~(v), which can be rewritten as 

Ff(nk(v)) >~ F~(v) (13) 

Let us prove it. Since Sl~ holds, F~(v)=x(v)-h(v)=f(x(N(v))).  On the 
other hand, from (11), nk(V) cannot belong to dom(P~), when 
F~(nk(v))=X(nk(V)), and (13) follows from (8). 

Case 2B. type(v)= B. Then there exists n(v). In this case the only 
difference between f2i+, and 12~ is that ~;+ 1 results from ~ by introducing 
a dipole from n(v) to v and ~ +  i differs from ~ in only one respect: instead 
of 6, it contains 6 . . . .  which has only one pole different from that of 6, 
namely 6new(k ) = n(v). 

All we need to prove in this case is Q5~+~ again. Now the right side 
increases by 1, and we must prove that the left side increases also, which 
comes to Fki(n(v))>Fki(v). Here Fki=x(v)-h(v)=f(x(N(v))) from SI,, 
while F~(n(v))=X(n(v)) from (11) and Q4i. Thus the inequality to prove 
follows from (9). 

Case 3. Sli and S2i hold, but S31 fails. So @~ contains a nontrivial 
negapole 6. Let us prove that dom(5) and root(6) do not intersect. Assume 
the contrary: there is some 6-(k)eroot(6). Since all the elements of 
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dom(6) are upstarts, they have no G-neighbors. (From G3i a vertex of G 
has no G-neighbors iff its type is U, that is, iff it is an upstart.) Since f - ( k )  
has no G-neighbors, root (g)=  {3-(k)}. Then f is trivial, which contradicts 
our assumption. 

Thus, every pole of f belongs to the transit G-neighborhood of some 
T-neighbor of root(g). This allows us to define a posipole n on Nr( roo t ( f ) )  
by the following rule: for every k its kth pole n+(k) is that T-neighbor of 
root(g), whose bush contains 3-(k) .  From Lemma 3 the graph ~-7(root(f)) 
is connected. Therefore there exists a spanning kit of ~ on ~-7(root(f)). 
For every member e of its spanning truss we form a posiedger ~,(e) on V' 
as follows. Remember that e is a posiedger, whence its domain has two 
elements, say A and B, which are vertices of the graph ~r(root(f)), 
connected with an edge. So there are leaves 

t r a n  c e V ,  a e N  v ( A ) n N c ( c ) ,  b e N " a n t B  ~ ~ p r i N t ( c )  

Now define our posiedger ~ as follows: 

Vk: 7+(k )=~  "a if e ( k ) = A  
~b if e ( k ) = B  

Truss F~ consists of these ~,: 

F~ = (~,(e): e e span-truss(n, V(root(f)))  > 

In Case3 the only difference between I2;+~ and I2; is that 
cd,.+ ~ = %  �9 Fj and ~ +  ~ differs from @,. as follows. Denote 

~ii+ 1 = Ai+l * ~i+ l * %+ t and V~p,n = ver(span-tree(n, ~-7(root(f))) 

From (6), ~-~i+t is 1-even on every Be  V~pa,. Thus, for every j every 
branch B e  V ~ ,  serves as the j th  pole just for one member of < ~ > .  
span-truss(n, V(root(f)). This means that for every Be  V~p~, and for every 
j the truss <3> �9 F~ has just one positive j th  pole in bush(B), and let it be 
the negative j th  pole of the new negapole fib that corresponds to B. Now 
define 

~i+t = ( ~ i - - f ) *  <gin: Be  V~pa. > 

All we need to prove in this case are Q2i+ l and Q5~+ i. Condition Q2i+ 1 
follows from (7) and (6). Let us prove Q5~+ ~. As time grows its right side 
grows by r .  IFil and we must prove that the left side grows at least as 
much. Since P{+ ~ = P{ for all j, the left side grows by 

sum(Fi, ~ i+l ) - -sum(F/ ,  ~ i )=sum(Fi ,  <rn: B e  Vspan>)--sum(Fi, f )  (14) 
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Note that for every j the j-pole of 6 coincides with some j-pole of <6n: 
Be  Vsp~n>), and the corresponding terms of our sums cancel out. Let us 
call all the other poles of <68: Be  V~pa,)) intermediate. Let us prove that 
no intermediate j-pole belongs to dom(P{). Assume that there is an inter- 
mediate j-pole vedom(P{).  Then from Q4,., vedom(.~;(j)), that is, v is a 
j-pole of .~. Then from Q7~, v has a transit iT-neighbor w e ~ ( j ) .  Since 
webush(6),  (12) ensures that w cannot belong to the bush of any other 
member of ~ .  Thus w is the j-pole of 5. Thus 5 -  (j) is a transit G-neighbor 
of v. But 6 -  (j)  coincides with some nonintermediate j-pole of our spanning 
truss. Thus two j-poles of some different members of our spanning truss 
are G-comparable, which is impossible, because they belong to bushes of 
different T-neighbors of root(6). Thus no intermediate j-pole belongs to 
dom(P{). Thus the value of F{ at any intermediate j-pole v equals x(v), 
which is positive, because v is a vertex of (7 (see GI~). Thus the difference 
(14) is not less than the number t(lV~p~,[- 1) of the intermediate poles. 
From (5) this number equals rlF~l. 

Thus f2~+t is defined and Conditions Q;+~ proved in all cases. 

4,3.  Resu l t  o f  Q - I n d u c t i o n  

Let us prove that Q-induction stops. From Q41 the sum sum(P1 ) + ... 
+ sum(P~.) is bounded, whence Case 1 cannot occur infinitely. From Q3~ 
and (12) ]~] cannot be greater than ]ver((7)l, whence Case3 also 
cannot occurs infinitely, because its every occurence increases ]~]. Now 
sum(F~, ~ )  is also bounded, because every value of functions F{ on vertices 
of (7 cannot exceed t(p). Thus, the left side of QSi is bounded, whence the 
right side is also bounded, whence ]~] and ]cg;] are bounded, whence 
Case 2 also cannot occur infinitely. 

When Q-Induction stops, we obtain the trusses ~ ,  ~ ,  cg~, ~ and the 
patches P~ ..... P~ for which Conditions Q; and S; hold, and define 

~ r  g = ~ , , ~ , ,  e = e ]  n ... h e ;  (15) 

Remember that our goal was to present a patch P; now it is given by (15). 
The inclusion h e P is assured by Q4/. It remains to prove that P c  ~(p,  q). 

First let p . b e  an upstart. In this case G-induction stops without 
making a step. Q-induction makes r steps, at every one of which Case 1 
holds. When it stops, ~r ~r, and fir are empty, ~r consists of one trivial 
negapole all of whose poles coincide with p, and dora(P{)--- {p} for all j, 
where P = Po. 

Now let p not be an upstart. Let us prove that the triplet ~r g, P 
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defined by (15) satisfies Conditions F. In this case G-induction makes at 
least one step, (7 contains more than one vertex, and ~r �9 g is nonempty. 
d .  g is connected and overall-even, because -~; is, and because the only 
difference between them is ~i, which consists of trivial polars from $3~. For 
the same reason dom(~r �9 d ' )=  dom(~.). Then: 

FI follows from QI~. 

F2 follows from Q2i and $3i. 

F3 follows from Q3i. 

F4 follows from Q4j. 

F5 follows from Q4i, QSi, from the fact that P belongs to all P~, and 
from the fact that when Q-Induction stops, sum(Fi, ~ ; ) =  0. [This follows 
from (10) and S2i.] 

Thus Proposition 1 is proved. II 

Let us see that our constructions give for Example 1 of Part I when 
p = (0, T), q = 1, and the hidden variables equal 0 everywhere except the 
points ( -  T, 0), ( -  T +  1, 0) ..... ( -  1, 0), (0, 0), where they equal 1. These 
points are the upstarts which ultimately cause the event x(p)>>, q. Points of 
the triangle 

{(s, t) where -T+t<~s<<,O for all t = 0  ..... T} 

are vertices of (7. Every upstart is a branch of its own (which is always 
true) and all of these branches are T-neighbors of the branch 
{ ( - T + I ,  1) ..... (0, 1)}, which is the only T-neighbor of the branch 
{ ( - T + 2 , 2 )  ..... (0,2)}, which is the only T-neighbor of the branch 
{ ( - T + 3 , 3 )  ..... 3,)  ..... (0,3)}, and so on to the branch {(0, T)}. When 
Q-Induction stops, the truss ~,. consists of two "chains" of arrows 

( - T ,  0)-o ( - T +  1, 1)---, ... --. ( - 1 ,  T - 1 ) - - *  (0, T) 

and 

(0, 0 ) ~  (0, 1 ) - - . . . .  ---, (0, T -  1)---* (0, T) 

The truss 8;  is empty. (hi is always empty in Examples 1-3.) The truss cgi 
consists of T posipoles, which also form a "chain" 

( - T , O ) - ( - T +  L O) . . . . .  ( - 1 ,  0 ) -  (0, O) 

One can see that the three "chains" formed by ,~ and ~i surround our tri- 
angle. Thus the resulting truss f,. has the shape of a contour. This takes 
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place in Example 1 always, because r = 2 in this example. Whenever r/> 3, 
the resulting truss does not have the form of just a contour; its geometrical 
shape ramifies. 

5. PROOF OF PROPOSITION 2 

Proof of Proposition 2 is similar to and based on the proof of Proposi- 
tion 1. In this case for every p and q we construct two finite families 
r q) and ~"(p, q) of patches which cover the event (x(p)>~q) and 
satisfy the following conditions where C = const: 

Prob(P)  ~< ~'e + (Ce) z if q = 1 
~(Ce) q+~ if q > l  (16) 

Pr 

~. Prob(P)<~const.t(p).(C.e)q+,+ . . . .  I - M  (17) 
P~"(p ,q)  

This ensures Proposition 2, because any constant T given, while t ( p ) <  T M, 
the right part of (17) is still less than const.  (const. e)q+l+ . . . .  t.M, whence 
(1) follows. II 

5.1. Description of (l:~'(p, q) and r q) 

Remember the definition of zl in Part I and denotes d i a m j ( S ) =  
d + diam(S). Let us first prove that for any v e V 

diam~(N~a"(v))~<A+ ~ d i am ~(N~ ' (w) )  (18) 
w E  NG(vl  

Call two point-sets zt-close if the distance between them does not exceed A. 
(Note that any nonempty set is A-close to itself.) For any family F of sets 
let union(F) be the union of its elements. Call a family of point-sets 
A-connected if it is possible to go from any element of its union to any 
other, every step made between elements of A-close sets. If a family F of 
point-sets is A-connected, then 

diam~(union(F))~< ~ diam4(S) (19) 
S E F  

which can be proved by induction. Now (18) follows from (19) applied to 
the case when the family consists of the point v and transit G-neighborhoods 
of all G-neighbors of v. (Here we assume that the transit G-neighborhood of 
any point is the union of this point and transit G-neighborhoods of its G- 
neighbors. To assure this we must have made all the arbitrary choices in the 
course of G-Induction in some standard way.) 

822/74/I-2-9 
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- -  d Denote by ~M the process on the finite volume VM -- ZM" Time. Call its 
elements M-points, while ~-points  will be the elements of Vr = Z~  �9 Time. 
Define a map fin: V~-*  V M as follows: fin(s, t )=  (s', t), where compo- 
nents of s' are residues of components of s modulo M. The opposite map 
inf: VM ~ V~ is quite simple: inf(s, t) = (s, t). Call elements of the finite 
and infinite hidden space hidden M-configurations and oo-configurations. To 
every hidden M-onfiguration h there corresponds a periodical hidden ~ -  
configuration h' defined by the rule h'(v)= h(fin(v)) for all v ~ Voo. We shall 
use the auxiliary infinite process ~ "  on V~ induced by the finite hidden 
measure with this map. Note that the restriction of the process ~ to any 
point v coincides with the restriction of tR M to fin(v). 

Accordingly, we consider patches of two kinds: r and 
M-patches (with correspond to the infinite and finite systems). An ~-patch  
P~ given, PM=fin(Po~) is the M-patch which maps any v into the 
maximum of those numbers into which P~, maps preimages of v. 

Say that a set S c Vr overlaps if there are such different v, v' ~ S that 
fin(v) = fin(v'). 

To  d e f i n e  r  One element of it is the M-patch Po whose 
domain consists of one element v and which maps it into h(v) (just as in 
the infinite case). Otherwise, an M-patch PM belongs to r k) if it is 
representable as fin(P~), where P~  is such an ~-patch  for which there are 
such trusses d and g on Vo~ that (~r g, P ~ ) e  ~(inf(v), k) and dom(P~)  
does not overlap. Family r  q) satisfies (16), which can be proved in just 
the way (2) was. 

To d e f i n e  r  q): An M-patch PM belongs to r  q) if it is 
representable as fin(P~), where P~ is such an ~-pa tch  for which there are 
such trusses ~r and g on V~o and such an M-point vice(p)e N'~a"(p) that 
(~r g, Pco)e ~(vice(p), q) a'nd dom(P~)  does not overlap and 

M - A  
diama(dom(~r �9 g))/> (20) 

n 

Let us prove that the family ~"(p,  q) satisfies (17). From (20) and the 
definition of diama(.) 

M - A  
d iam(dom(d  �9 ~)) > / - - -  A 

n 

Note that if a connected truss ~- consists of edges on V', then 
diam(dom(W)) ~< const. 19"1. Then I d  * ~1/> const. M -  const from F2. 
Now, due to FI  and F2, we can apply Lemma 2, which gives Igl 1> 
c o n s t - M - c o n s t .  Note that if dom(Po~,) does not overlap, then 
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sum(fin(Poo))=sum(Poo). Then, from F5 and the fact that dom(P~)  does 
not overlap, 

sum(PM) = sum(P~o) >/C~ �9 M -  C2 

where C~ > 0  and C 2 are constants. Now let us prove (17) by evaluating 
the cardinality of the sets 

�9 j '(p, q) = { S t  ~"(p,  q)[ ISI = j }  

As we have proved, [~7(P, q)l = 0  for all j<Ct .M-C2.  
Now let j>~ Ct �9 M -  Cz. From F5, I~'1 ~< r- ( j -  q), then from Lemma 2, 

L, ff  * gl ~< const.  ( j - q ) .  Thus I~Y(P, q)l is 0 for j < q and does not exceed 
const u -  q) for j >/q, which can be proved based on Euler's theorem as in the 
infinite case. Hence for small enough 

e ~mwl ~< const - M a. t(p) ~ (const �9 c) j 
PC ~"(p,q) j =  m a x  { q ,  C i  - M --  C2}  

which is less than the right part of (17) with suitable constants. 

5.2. The Patch 

Given an M-point p, a number q, and a hidden M-configuration h 
such that x(p)>/q > 0, we apply constructions of the infinite case to the 
oo-point inf(p) and the hidden oo-configuration h' to obtain the triplet 
( d ,  d', P) defined by (15). Let Y'~(p, h, q ) = s r  �9 o ~ be the concatenation of 
the first two terms of this triplet, and Po~(P, h, q) be the last term of this 
triplet. Let us prove that if dom(Poo(p, h, q)) overlaps, then p has a transit 
G-neighbor vice(p) for which dom(P~(vice(p) ,  h, q)) does not overlap, and 

M - A  
diam~(dom(~--(vice(p), h, q))) >t (21) 

n 

Take the set of those points w~N~a"(p) for which dom(Poo(w, h, q)) 
overlaps, and take a point z in this set whose time is the smallest. Let us 
prove by contradiction that at least one G-neighbor of z fits our need. 
Assume the contrary. 

M - A  
Vw~ No(z): d i am~(dom(f (w ,  h, q))) < 

n 

Then from F5 and (18) 

diam(dom(P~(z,  h, q))) < diam~(dom(P~(z,  h, q))) ~< diam4(N~an(z)) < M 

But this is impossible, because if some S c V~ overlaps, then diam(S)~> M. 
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Now we can define a patch PM ~ ~'(P, q) w ~"(p, q) for any M-point 
p, any hidden M-configuration h, and any q<<.x(p) as follows: 

,~fin(Poo(p, h, q)) 
PM = [fin(Poo(vice(p), h, q)) 

if dom(Po~(p, h, q)) does not overlap 
otherwise (22) 

Every patch defined by the upper line of (22) belongs to # '(p,  q), and this 
can be proved as in the infinite case. To prove that every patch defined by 
the lower line of (22) belongs to ~"(p, q), note that (20) follows from (21) 
and all the other assertions can be proved as in the infinite case. Thus 
Proposition 2 is proved. II 
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